
Enterprise Java Beans

312

Recall that in developing software applications, we can think of three major layers:
Presentation, Domain Logic and Data Source.

Even though the borrowing power calculator has no database, it does have
presentation and domain logic.

In lecture 3 we looked at various ways of structuring our application to improve the
separation between layers.

However, even though our code was well designed, there were a number of things
we could not do:
• Our domain logic cannot be run on separate machines
• Our domain logic must be packaged with the presentation technologies
• Our domain logic must be managed in the same environment and configuration of

the presentation technologies

That is, so far, we have only been able to reuse our domain logic. We cannot share
and manage it.

313

EJB technologies allow you to do this: share a module of domain logic.

313

So far we have been building systems where the presentation and domain logic have
been executing on a single tier.

For simple applications, this is not a problem.

However, as we want to scale and grow our application, we may need to start running
the application over several machines.

The way we have been developing our software in this subject, so far, does not make
any concessions for the code being run on multiple machines. We have not been able
to call method or objects on other computers. We have only been able to create and
call methods directly in the domain layer.

EJBs allow you to separate the presentation logic and domain logic into separate
tiers, as in an n-tier architecture.

314

If we "zoom in" on the Web Server and Application Server, we see the situation that
EJBs are designed to solve.

We have different presentation technologies in our Web Server.
The presentation technologies access the domain logic in the application server.

We have domain logic in our Application Server.
Our domain logic is implemented in a number of different components.
These components run on the application server.
The web server communicates to the application server via a network.

EJB technologies assist with managing the domain logic components and also
providing the connectivity between the two tiers.

315

Arun Gupta (2013) Java EE 7 Essentials, p 145.

Key points:
• Component based: emphasizes separation of concerns and reusability
• Distributed: can be run over a network
• Scalable: can grow with more complex situations
• Transactional: ensures data correctness and works with database transactions
• Secure: it has built-in measures to ensure authentication and security

316

An ordinary java class is sometimes referred to as a "POJO".
"POJO" stands for "Plain Old Java Object".

In a social network app, this class represents the business logic.
This class lets you "like" and count the "likes" on a post.

317

Converting the POJO into an EJB is a simple matter of adding an annotation.

This one annotation automatically gives you all the benefits of an Enterprise Java
Bean.

With the annotation the class is now transactional, distributable and so on.

Note: I also renamed the class. This is not required. However, it is convention that the
name of an EJB implementation should end with "Bean".

318

Once you have declared a session bean you can use it by dependency injection (you
can also use JNDI lookup as well).

i.e., we might use the SocialNetworkBean in a backing bean that looks something like
this:

@Named
@RequestScoped
public class SocialNetworkController {

@Inject
private SocialNetworkBean sn; // here we inject the bean

… other private variables, setters and getters …

public String like() {
sn.likePost(currentUserId, postId); // now we use it
return "liked_successful";

}

319

}

319

There are two types of Enterprise Java Bean.

They have different modes of operation.

Session Beans work like ordinary Java classes and methods.
The Java EE application server adds all the EJB capabilities to your domain logic.

Message-driven beans do not work like ordinary method calls.
Instead, you send a message to a message-driven bean.
The message-driven bean will process the messages one-by-one.
You do not wait for the response.

The difference is analogous to making a phone call versus sending a letter.
Imagine you are trying to get a new credit card.
If you call up the bank, you will ask (and be asked) a number of questions, over the
phone.
The application process will be completed while you are on the phone.
You can only call when telephone banking is available.

320

If, instead, you were to apply by post, you only need to put the letter in the letterbox.
The bank will receive the letter in a few days at some unknown time.
They will process the information on the letter and then your credit card will be
approved.
You can post your letter at any time. You can drop it in the postbox at 1am if you
wish.
It doesn't matter if the bank is open or closed.
You don't need to wait around for the response.
You can keep working on other things.

320

321

322

323

There are two types of Enterprise Java Bean.

They have different modes of operation.

Session Beans work like ordinary Java classes and methods.
The Java EE application server adds all the EJB capabilities to your domain logic.

Message-driven beans do not work like ordinary method calls.
Instead, you send a message to a message-driven bean.
The message-driven bean will process the messages one-by-one.
You do not wait for the response.

The difference is analogous to making a phone call versus sending a letter.
Imagine you are trying to get a new credit card.
If you call up the bank, you will ask (and be asked) a number of questions, over the
phone.
The application process will be completed while you are on the phone.
You can only call when telephone banking is available.

324

If, instead, you were to apply by post, you only need to put the letter in the letterbox.
The bank will receive the letter in a few days at some unknown time.
They will process the information on the letter and then your credit card will be
approved.
You can post your letter at any time. You can drop it in the postbox at 1am if you
wish.
It doesn't matter if the bank is open or closed.
You don't need to wait around for the response.
You can keep working on other things.

324

Session beans have nothing to do HTTPSession or @SessionScoped or Cookies.

Think of it as a server-side unit of work.
Or, think of it as a connection between the EJB client code and the EJB server code.

325

326

Declare a session bean with an EJB session bean annotation (@Stateful, @Stateless
or @Singleton).

Then you can use an EJB simply by injecting it into your code using the @EJB
annotation.

327

In our simple example of declaring and using an EJB, there are a number of issues
that will come up when we try to deal with large-scale systems.

How can we the code by distributed?
How can the declaration and usage be handled from separate computers?
How can data be copied across the network?

328

In Java, an interface is a class without any implementation code. It is just a collection
of method names.

You annotate an interface with @Remote to tell Java EE that it can be used from a
remote machine.

Java EE will automatically generate a class that works something like the following:

public class BorrowingPowerRemoteProxy implements BorrowingPowerRemote {
public double getLoanAmount(int loanTerm, double income, boolean isCouple) {

open network connection to domain logic tier
send method name "getLoanAmount"
send parameters: loanTerm, income, isDouble
receive response
return response

}
}

So that, when you use injection on the client…

329

@EJB private BorrowingPowerRemote remote;

…then Java EE will do something similar to setting:
remote = new BorrowingPowerRemoteProxy();

… and, on the system that runs the domain logic layer, Java EE will have a class that
acts as a server for those network connections:

public class BorrowingPowerRemoteServer {

private BorrowingPowerBean bean = new BorrowingPowerBean();

public void run() {
while true:
wait for network connection
receive method name
receive parameters
look up method name on bean
call bean and get result
send result back to client via network connection

}
}

329

From the client side, a remote interface works just like any other EJB, and works just
like any other Java objects.

You inject the interface using @EJB, then you can call methods on the injected object
as though it were an ordinary Java object.

330

Behind the scenes, the application server creates proxies.

Proxies are fake classes that implement the remote interface.
When you call a method on a proxy, then it will forward the data to the remote
server.

So, this code above is a highly simplified example of what a remote proxy might look
like.

When you call likePost on the proxy, it connects to the remote server, and sends a
command to call "likePost" on the real object, passing along the parameters
currentUserId and postId.

331

There's an important distinction between when you call a method on the local
computer (e.g., in ordinary Java) versus calling a method over the network.

When you pass parameters to a method on the remote computer, the data needs to
be transmitted and copied over to the other machine.
When you pass a parameter, you need to save the value of the object, and then
reconstruct the object on the other end.

332

When calling remote interfaces from a local machine the EJB designers had three
possibilities:
1. Use a network connection to connect to yourself.

This guarantees that a remote connection on a remote machine works exactly the
same as a remote connection from a local machine.

2. Bypass the proxy and pass the object directly.
This is very efficient because there are no network overheads. However the
downside is that passing values directly is very different to copying them
(serialization) and creating new objects that are copies (deserialization).
This could cause bugs: if you assume that the data has been copied over a
network, then you might decide that it is safe to modify and otherwise corrupt
the object that was sent (because it is just a copy). If the object was, in fact,
passed directly, then the original object will be unexpectedly corrupted.

3. Bypass the actual creation of a network connection, but simulate the connection
by copying data.

333

For the best compromise between reliability and performance, the EJB designers
chose to require a Java EE application server to essentially simulate a network
connection when you use a remote interface to call an object on the same machine.

334

When we send data over the network, it must be a copy (or a proxy).
You can't simply pass a pointer or reference to an object.

Consider the situation where I have a Data Transfer Object:

public class Person {
private String firstName;
private String lastName;
… setters and getters …

}

And I pass this object to an EJB:

@EJB
private WaitingListBean waitingList;

Person myPerson = new Person();
myPerson.setFirstName("Carol");

335

myPerson.setLastName("Brady");
waitingList.addPerson(myPerson);

Then, to send myPerson over the network, Java EE must read the internal data, send
it over the network and create a new object on the other end.
When the WaitingListBean receives the Person object, it will be a new version of the
object.
The value of that object matters. Not specific reference to the instance.
That is, it uses call-by-value semantics.
If the WaitingListBean were to make changes to the Data Transfer Object (e.g.,
myPerson.setFirstName("Mike")), this information is not automatically reflected back
on the client.
(If you wanted the client to see the change, you'd need to send it back in the return
value.)

Call-by-value semantics apply even if the @Remote interface is running on the same
machine.
Java EE pretends that the machines are separate, even if they are not.
Objects passed to @Remote interfaces will be copied, even if both sides are running
on the same machine.

@Local and @LocalBean must always runs on the same machine.
This means that there is no need to copy data.
@Local and @LocalBean always use call-by-reference semantics.
i.e., @Local and @LocalBean work like ordinary Java classes.

335

The easiest way to understand EJBs is to imagine that the presentation logic and
domain logic are running on separate computers.

However, in practice, actually opening the network connections is slow and resource
intensive.

The performance costs of this network connection are unnecessary when both the
caller and implementation are running on the same computer (i.e., the same Java
Virtual Machine).

This creates a potential for optimization that Java EE exploits with @Local and
@LocalBean annotations.

An interface annotated with @Local works similar to @Remote interfaces.
However, both the caller and implementation need to be running on the same
machine. This is assumed and required for local interfaces.

@LocalBean is similar to @Local.
However, an @LocalBean means that the implementation class can be used directly.

336

There is no need to access the implementation via interfaces.
Behind the scenes, Java EE will subclass your bean to achieve the effect of creating a
proxy.
Thus, using @LocalBean essentially saves the hassle of needing to implement
separate interfaces.
However, @LocalBean only makes sense in simple scenarios.
Implementing a full interface (@Local or @Remote) does tend to result in a better
design.

Finally, @Remote can also be used on the same machine.
Java EE knows that the remote network connection isn't required.
It will bypass the costs of establishing that connection.
However, it will still do its best to "pretend" to have a network connection.
This means that when you pass an object to a function, it will not pass the object
directly.
It will copy the object and give the copy to the target function.
This copy is necessary because when you send an object over the network, it
generally must also be copied.
Within a virtual machine this effect is simulated by copying.

336

The annotations are used by adding them to the start of an interface (in the case of
@Remote or @Local) or the start of a concrete class (in the case of @LocalBean).

You can combine the annotations.
A bean can have a local interface and a remote interface, as well as also being a local
bean. You can use all three annotations, or just the ones that you need.

Note: If you do not have @Remote, @Local or @LocalBean, then the default is just
@LocalBean.

337

So, @Remote solves the problem of distributing and copying data across the network.
@Local and @LocalBean also help manage the complexity and performance impacts
of using remote interfaces.

However, we haven't addressed how the application server manages the instances of
the server-side Enterprise Java Beans themselves.
That's what the next slides will cover…

338

In computing, state usually refers to systems that have some kind of "memory" of the
past.
In other words, the result of an action depends on the previous actions that have
occurred in the past.

In the case of EJBs, state refers to whether the bean stores information between
requests.

A Stateful EJB is like an ordinary Java class.
A separate instance is created each time an EJB is created by injection or JDNI lookup.
The local variables of the instance can be used to store ongoing information.

A Stateless EJB is more like a collection of independent methods
The Java EE server might create a handful of stateless EJBs.
However, any given request can go to any of the stateless EJBs.
In fact, invoking the same method on an "EJB" twice in a row, could be directed to
two completely separate instances of the implementation bean.

A Singleton EJB exists only once in an application.

339

All requests go to the one instance of the bean.

339

The different kinds of beans correspond to different annotations.

340

341

A stateful session bean has an ongoing state (i.e., an ongoing connection to the
server).
This means that it is possible design your bean so that it needs to remember some
state.

In the example above, the EJB needs to remember who the current user is and what
the current post is.
That way, when you call markCurrentPostAsRead, it will mark the currently selected
post as being read by the currently selected user.

This means that the state on the server needs to include: current user and current
post.

342

We can eliminate the need for state to be stored on the server.
Instead, we can expect that the presentation logic (i.e., the client) needs to
remember the state.

So, the EJB has methods to check if there are unread posts for a user, to retrieve the
unread posts by the user and the mark a particular post as being read by a particular
user.

Notice that this time there's no dependencies between the methods.
The methods are self-contained.
There's no need to set the current user or set the current post because the required
information (i.e., the required state) is passed along with every request.

343

That stateless EJB could also be simplified even more, by just moving the logic into
the domain logic in a method of the EJB that does multiple actions.

344

345

346

347

Which do you think is fastest?

Can you put them into order from slowest to fastest?

348

Factors that affect performance:

• Network (the costs of establishing the network connection and sending the data
over the network: throughput, latency)

• State (the need for the application server to remember the individual details of
each separate stateful bean, this takes memory/disk space)

• Overheads (other overheads relating to transactions, locks and also things like
emulating call-by-value semantics when using a @Remote interface on a local
machine)

349

Here are some timings calculated on my computer. The timings are calculated from
many trials involving:
• Getting a reference to an EJB
• Calling two functions, the second being a "close" (@Remove) function in the case

of a stateful bean.

Clearly, even though the it was running on the one machine, the operating system
overhead associated with establishing a network connection takes a fair bit of time!

350

Which do you think is fastest?

Here's a typical ranking of the performance:
• C (slowest)
• A/E (slow)
• D (fast)
• B/F (fastest)

Stateless and singleton beans are roughly equivalent in speed.

When I last tested the performance, the stateless beans appeared to be just slightly
faster than singleton. However, the difference was very small. It could have just been
measurement error.

351

352

353

The lifecycle of an EJB is controlled by the container.

1. An EJB is constructed (i.e., new MySessionBean()) but it will not receive any
requests until after it has been initialized.

2. It is initialized by calling the method annotated with @PostConstruct (if one
exists).

3. After @PostConstruct, the EJB will be able to respond to calls from clients.
4. The container will call @PreDestroy when it does not need to use the EJB

anymore.
5. It will not receive any requests after it has been destroyed.

These states are depicted in the diagram above.

Why do we need a lifecycle?
Why not just use the constructor and finalizer that can be used on any class in Java?

The reason is that the application container needs to start up cleanly and safely.
It may need to instantiate the object and inspect the object early.
However, it can only initialize the session bean when other services in the container

354

are ready (e.g., it may need to wait for the database to be ready before allowing the
session bean to initialize).

You cannot assume that any of the application server’s services are available in the
constructor – any initialization that depends on databases or other application server
services should be done in a method annotated with @PostConstruct.

354

The same lifecycle applies to stateless session beans. The only difference is that the
application server might create more than one instance

355

Methods annotated with @PostConstruct are called just after the SocialNetworkBean
has been created.
This is where you would your own code to initialize your EJB.
Use @PostConstruct instead of the object's constructor because you be sure that the
execution environment has been set-up properly yet in the constructor.

The same thing applies to @PreDestroy.
Annotate a method with @PreDestroy when you need to write clean-up code that is
executed when the application server is finished with your EJB.

356

A Stateful bean has a few extra states and operations.

Stateful beans use up memory. If the application server needs to make space, it can
save the state of some of those stateful beans to disk. This is called passivation.

The additional "Passive" state refers to beans that have been stored on disk or a
database.
Methods that have been annotated with @PrePassivate or @PostActivate are called
by the Java EE server before being saved and after being loaded from disk
(respectively).

The @Remove annotation can be added to any method.
If a method has this annotation, then the Stateful EJB will be destroyed after such a
method has been called.

357

358

359

360

Looking at the Session Bean…

There are three types:
• Stateful: Stores state associated with each instance. This is similar to a network

connection. One instance of a stateful session bean will be created for each user.
• Stateless: Stores no state associated with users/instances. This means that

Stateless session beans can be reused by multiple users.
• Singleton: Has only one instance in the entire application. This is similar to how a

Servlet works: one instance handles all requests.

361

362

The easiest way to understand EJBs is to imagine that the presentation logic and
domain logic are running on separate computers.

The domain logic is implemented in an EJB.
The domain logic implements an interface.
The interface defines the functions that the EJB makes available.

The presentation logic then accesses the domain logic via that interface.

On the client, Java EE automatically generates a class to implement the interface.
That class runs on the presentation tier.
That class has code to automatically connect to the domain logic tier.
The domain logic tier decodes the request and passes it to the appropriate instance
of the EJB.

This means that the presentation tier only needs access to the interface.
The implementation of the business logic is executed and stored only in the domain
logic tier.

363

364

365

366

Get current inventory levels
This is probably stateless. If we are checking the number of copies of the book
"Beginning Java EE 7" in a book store, it probably does not depend on who we are or
what the previous requests were.

Submit expense report
This might be stateful. Submitting an expense report could consist of several stages
that need to be performed in sequence. Alternatively, if you need to submit many
expense reports in a small amount of time, it might make sense to be able to
remember common information such as the username and reimbursement details.

However, it is more likely to be stateless. You would construct an expense report in
the user interface but submitting it is done in one command.

Add new customer
This is probably stateless. Adding a customer to a database could be done in a single
command without needing to refer to previous information.

Reserve flight

367

This might be stateless or stateful.

Perhaps reserving a flight is a two-stage process. First, you check the seat availability
and this results in the seat be reserved for 10 minutes. Then you have 10 minutes to
pay for that seat before it is released for booking to another user.

Alternately, perhaps checking seat availability does not guarantee availability.
Checking availability and reserving may be completely independent. This might mean
that it makes sense to keep them as entirely independent, stateless operations (thus
freeing up any resources required to maintain state).

Finally, even if the availability and reservation is completely separate, in some
circumstances it might make sense to retain statefulness. Perhaps sending the flight
and time details uses lots of data on a slow network. This data would be the same for
checking availability and making the reservation. Retaining state on the server could
help minimize some of the network costs.

Shopping cart
Shopping carts are often given as an example for why @Stateful beans are needed.
Adding items to a shopping cart is certainly an ongoing process that does involve
state.

However, in practice this may not be ideal.

The shopping cart concept may be a presentation layer issue. Tracking shopping carts
over time should perhaps not be part of the domain logic. If we consider another,
radically different, user interface we might not have a shopping cart. For example, we
may just be buying a list of items that are sent in one order. That is, the relevant
domain logic command is a buy or order function, not the creation of a shopping cart.
The state is stored in the presentation layer (i.e., using cookies and @SessionScope)
and the domain logic is stateless.

If the shopping cart is part of the domain logic, then it may still make the most sense
to make it stateless. Consider shopping carts on amazon.com. You can add an item to
your cart today but come back in a year's time to check-out your purchase. This
wouldn't make sense as an EJB because the original EJB-client would be long gone
and the Stateful bean would have timed out long before the year passes. Adding to a
shopping cart might be a simple stateless operation: the real state is being stored in
the database (not in a stateful bean).

This is ultimately a design decision you will need to make for yourself. Consider the
trade-offs between simplicity and the cost of storing state. Consider also whether

367

building a shopping cart relates to an ongoing but time-limited stateful unit of work,
whether the shopping cart is a presentation layer issue or if the shopping cart
operations are simply changes to a database but that require no ongoing state in the
domain logic layer.

Screen-by-screen checkout process
Much the same discussion with the shopping cart applies to screen-by-screen
checkout processes.
The choice of individual screens may be a presentation layer issue: the actual
transaction may make most sense as a single stateless action at the end of a
sequence of presentation-layer actions.

367

